Entropía es un concepto que se aplica en termodinámica, mecánica estadística y teoría de la información. Los conceptos de información y entropía están ampliamente relacionados entre sí, aunque se tardó años en el desarrollo de la mecánica estadística y la teoría de la información para hacer esto aparente. Esta entropía se llama frecuentemente entropía de Shannon, en honor a Claude E. Shannon.
El concepto básico de entropía en teoría de la información tiene mucho que ver con la incertidumbre que existe en cualquier experimento o señal aleatoria. Es también la cantidad de "ruido" o "desorden" que contiene o libera un sistema. De esta forma, podremos hablar de la cantidad de información que lleva una señal.
Como ejemplo, consideremos algún texto escrito en español, codificado como una cadena de letras, espacios y signos de puntuación (nuestra señal será una cadena de caracteres). Ya que, estadísticamente, algunos caracteres no son muy comunes (por ejemplo, 'y'), mientras otros sí lo son (como la 'a'), la cadena de caracteres no será tan "aleatoria" como podría llegar a ser.
Obviamente, no podemos predecir con exactitud cuál será el siguiente carácter en la cadena, y eso la haría aparentemente aleatoria. Pero es la entropía la encargada de medir precisamente esa aleatoriedad, y fue presentada por Shannon en su artículo de 1948 A Mathematical Theory of Communication ("Una teoría matemática de la comunicación", en inglés). Shannon ofrece una definición de entropía que satisface las siguientes afirmaciones:
- La medida de información debe ser proporcional (continua). Es decir, el cambio pequeño en una de las probabilidades de aparición de uno de los elementos de la señal debe cambiar poco la entropía.
- Si todos los elementos de la señal son equiprobables a la hora de aparecer, entonces la entropía será máxima.
No hay comentarios:
Publicar un comentario